Selection does not favor larger body size at lower temperature in a seed-feeding beetle.

نویسندگان

  • R Craig Stillwell
  • Jordi Moya-Laraño
  • Charles W Fox
چکیده

Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,""Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle.

Body size of many animals varies with latitude: body size is either larger at higher latitudes (Bergmann's rule) or smaller at higher latitudes (converse Bergmann's rule). However, the causes underlying these patterns are poorly understood. Also, studies rarely explore how sexual size dimorphism varies with latitude. Here we investigate geographic variation in body size and sexual size dimorphi...

متن کامل

The effect of seed traits on geographic variation in body size and sexual size dimorphism of the seed‐feeding beetle Acanthoscelides macrophthalmus

Explaining large-scale patterns of variation in body size has been considered a central question in ecology and evolutionary biology because several life-history traits are directly linked to body size. For ectothermic organisms, little is known about what processes influence geographic variation in body size. Changes in body size and sexual size dimorphism (SSD) have been associated with envir...

متن کامل

Natural selection on body size is mediated by multiple interacting factors: a comparison of beetle populations varying naturally and experimentally in body size

Body size varies considerably among species and among populations within species, exhibiting many repeatable patterns. However, which sources of selection generate geographic patterns, and which components of fitness mediate evolution of body size, are not well understood. For many animals, resource quality and intraspecific competition may mediate selection on body size producing large-scale g...

متن کامل

Selection on body size and sexual size dimorphism differs between host species in a seed-feeding beetle.

Sexual size dimorphism varies substantially among populations and species but we have little understanding of the sources of selection generating this variation. We used path analysis to study how oviposition host affects selection on body size in a seed-feeding beetle (Stator limbatus) in which males contribute large ejaculates (nuptial gifts) to females. Females use nutrients in these ejacula...

متن کامل

The effect of inbreeding on natural selection in a seed-feeding beetle.

Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed-feeding beetle, Stator limbatus. There was strong directional selection fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 62 10  شماره 

صفحات  -

تاریخ انتشار 2008